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ABSTRACT

The problem of escape from the Moon is treated in this report using the techniques of the

calculus of variations. The Moon is assumed to be spherical and rotating. Only single stage

vehicles of constant thrust are considered. The three-dimensional equations used in a previous

study (Ref. 1) are modified to allow a smooth transition to planar segments of the trajectory.

Numerical data considers three escape modes: direct escape, escape through orbit, and

escape [rom orbit. For the first two modes, a further subdivision is made according to whether

the altitude or angle of attack is specified at cutoff. For certain trajectories which escape

through orbit, a discontinuity is inserted at circular orbit in order to specify the angle of attack

at cutoff.

For the last two modes, post-orbital traiectory segments are planar. In all cases, parabolic

energy (with respect to the Moon) is taken as the thrust termination criterion.

Data are presented in both tabular and graphical form. The initial lunar thrust-to-weight

ratio varies from 1 to 7 for the first two modes and from 0.2 to 7 for the last mode. Specific

impulses are taken to be 300, 350, 400, and 450 sec. Initial orbital altitudes are 50, 100, 150,

200, 250, and 300 kilometers for those trajectories which escape from orbit. Numerical exam-

ples illustrate applications of the data to preliminary design studies.
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SUMMARY

The problem of escape from the Moon is treated in this report using the techniques of the

calculus of variations. The Moon is assumed to be spherical and rotating. Only single stage

vehicles of constant thrust are considered. The three-dimensional equations used in a previous

study (Ref. 1) are modified to allow a smooth transition to planar segments of the trajectory.

Numerical data considers three escape modes: direct escape, escape through orbit, and

escape [rom orbit. For the first two modes, a further subdivision is made according to whether

the altitude or angle of attack is specified at cutoff. For certain trajectories which escape

through orbit, a discontinuity is inserted at circular orbit in order to specify the angle of attack

at cutoff.

For the last two modes, post-orbital trajectory segments are planar. In all cases, parabolic

energy (with respect to the Moon) is taken as the thrust termination criterion.

SECTION I. INTRODUCTION

A previous report (Ref. 1) treated the problem of three-dimensional ascent from the surface

of the Moon to low lunar orbit. Another problem of interest is lunar escape. Escape may occur

either from the Moon's surface or from a lunar orbit, and both possibilities will be discussed

here. Throughout this discussion, only single-stage vehicles of constant thrust will be con-

sidered.

Initially restricting the problem to escape from the lunar surface still leaves several options

to be studied. The first of these would be to follow a flight program that ascends to a low

circular lunar orbit and escape from this orbit as is usually done on earth-escape missions. A

second possibility is direct escape, i.e., circular conditions are not attained between lift-off

and escape. A third option is to first ascend to a low lunar orbit, perform a Hohmann maneuver

to a higher circular orbit, and then escape from this orbit. This option is closely connected

with lunar orbit rendezvous studies and will not be considered here.

Secondary options arise when consideration is given to various combinations of end point

constraints that may be specified, such as alignment of the thrust and velocity vectors at

escape,* or requirement of an altitude that is to be attained when escape occurs, etc.

* This condition minimizes deviations due to errors in the cutoff time.



Furthermore,thetime(orpositional.ong the trajectory) at which the required value of the

inclination is attained may be varied. The most probable application of a lunar escape tra-

jectory is to return to the Earth or, possibly, a planetary mission. For a given earth-moon (or

earth-moon-planet) configuration, the proper orbital inclination (with respect to the plane of

interest) must be attained at or before escape conditions are reached. For example we might

choose to ascend to a low lunar orbit having an inclination less than the value desired at

escape and gain the remainder during the portion of the trajectory between orbit and escape. A

more realistic assumption would be that the circular orbit has an inclination equal to the value

which is finally sought, and escape from orbit .along a planar trajectory.

Escape from lunar orbit also offers a number of choices, some of which are excluded if we

reference our discussion to lunar orbit rendezvous considerations. Since the primary application

of the work within this context will be escape of the Apollo spacecraft from orbit, there will be

no need to consider plane changes since these can be achieved more economically by the lunar

excursion module during the landing and ascent maneuvers. Even so, considerations of thrust

alignment and altitude specification at escape are possible.

The theory of Reference 1 is sufficient to cover all of the above possibilities except the

insertion of planar segments into a three-dimensional trajectory. We now proceed to investigate

the results of such a modification.

SECTION II. SUMMARY OF PREVIOUS THEORY

We begin by summarizing the pertinent context of Reference 1.

The equations are referenced to a spherical coordinate system r, 0, c_, and the thrust vector

orientation is given by the angles y and B (see FIG 1 and 2). The steering program, which

maximizes gross weight at cutoff, is governed by a set of five time-dependent Lagrange multi-

pliers (X 1 .... , As ) and one constant Lagrange multiplier (A 6 =- C1)-

The thrust-to-mass ratios (T/m) do not appear explicitly in the equations of motion; these

have been replaced by an expression containing the gravitation acceleration at the surface of

the Earth [(go ) . ] and Moon [(go ), ], the specific impulse (I_), the initial lunar thrust-to-weight

ratio (a), and the time (t). The quantity GM is the gravitational parameter of the Moon.

Vector equations are written in terms of the unit vectors _r, _0, and _ _ (which are perpen-

dicular to the surfaces described by constant values of r, 0, and _, respectively).

The velocity vector is given by

'0v =;u r +r0u#+r_cos u S (1)

The thrust vector is

T= Tcos 3cos y_ + T sin 3 _ + T cos3sin yu4 (2)

The energy of the vehicle during free flight (in particular, an arbitrarily short time after

cutoff) is given by

1 r2 (_2 + _2 2 _)1 GM
E= 7 [;2 + cos - --r (3)

A relationship between the latitude (0), longitude (_b), and inclination (I) which is valid during

free flight, is

tan 0 = tan I sin (_6 + q_0) (4)
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The equations governing the thrust orientation angles (y and 3) during powered flight,

such that the gross weight placed in orbit shall be a maximum, are*

tan 8-

A3 (5)
tan y- A lrc°s0

X2cos 0 X2 (6)
- - cos 0 sin y

X/ill2 r2cos20+Aa = A 3

The equations of motion along the trajectory, which maximizes gross weight in orbit, are

_ (go), (go)_ I,o 1 x_ cos 0 aM &= ---+,(b_+ cos_
; L(g0)_i p -a(go) , t X/(X_ r2+h_ )cosa O+X_ r2

o)

(7)

=_a(g°)'(g°)ol_; 1 h2c°sO 2rO _u sinOcosO
_(go)olsv-a(go), t rX/(A _ r2+h_ ) cos20+X2 a r

(8)

a (go)' (go)o l_p

_(g o)o l_v- a (go)q t
+ 2 0_tan0

rcos 0V(x_1 ,0+ x_ )cos, 0 + a] r
(9)

r

X ; aa_ ran0) +;[2 + 2 (hi r{} r =r + AS=0

>_+2 x, r cos a- X=sin a) g cose+ X_(_)t= a- +C,=0

£4+fi., [2 GM _2 1 2r__+ra (_a+ cosaO +_;__(Aa_+Aaq_)

I _(go),%)oIoo ]
-L(go)oI,v-.(go), _ I Xo2c°s'O+X' ]t r2cosO_/(X_ r2+X_)cos=O+X_

(10)

(11)

(12)

= 0 (13)

i5 -@2(X 1 r sin 20+h2cos 20) +2X 3_ Osec20

+L(go)_r.o-a(go), t rq(X 2 r2+h_)cosUO+)t_ =
o (14)

* The sign ambiguity discussed in Reference 1 is resolved by always considering that the vehicle is

fired with the planetary rotation to the North.



Equations(7)through(14)constituteasetof three second-order arid five first-order differential equations.

Subject to initial and final conditions, they constitute a complete specification of the trajectory which

maximizes gross weight in orbit (within the limits of variational calculus).

SECTION III. DERIVATION OF PLANAR EQUATIONS

Several methods are available for construction of the planar equations from the above set

of three-dimensional equations.

The simplest procedure is to equate the non-planar components of equations (7) through

(14) to zero, i.e., set 0, 0, 0", ;_2, )_2, ks, and As identically zero. This method has the dis-

advantage that physical significance is lost, and, what is worse, it is very difficult to insert a

two-dimensional segment between three-dimensional segments (or vice-versa).

Another method of approach is a reformulation of the entire set of variational equations

after incorporation of equation (4) in the form of a constraint as

A T [tanO-tan / sin (6+ 60)]

in the Eulerian fundamental function. This procedure is perfectly acceptable, but is much more

cumbersome and complicated than necessary.

The simplest solution, which retains physical significance and allows a smooth transition

between segments, is to incorporate equation (4) directly into the equations of interest.

We begin by solving (4) for

sinO- tanl sin(_+_5 o)

X/1 + tan z I sinZ (6+ 60 )
(15)

and

cos O = 1 (16)

x/l+tan21sin2 6+ 60)

Differentiating (4) with respect to time (requiring that the inclination remain constant) yields

sec 200= tanl cos(6 ÷ _o ) _ (17)

or

_ tan I cos (_b + 60)

1 + tan=/ sin2(_ + 60 )

Differentiating (17)

sec 2{90+ 2 sec 2 0 tan0_2 = tanlcos(_+g8 o)

(18)

- tan I sin(6+ 6o) _2 (19)

The second term of equation (19) may be written

2 sec 2 0 tan 002 = 20 (sec200)tan 0 (20)



Substituting0, sec2 00, and tan 0 from (18), (17), and (4), respectively, we find

2 sec2 9tan{)_2 = 2 sin (6 + 60 ) c°s2 (6+60) tans I _2

1+tan 2 1 sin 2 (6+ 6o)
(21)

Inserting (21) into (19) and solving for _ gives

f 1 + tan 2 I [1+ cos 2(6 + 60)] /
0 c°s(6+60)tanI_l+tan21 sin 2(6+6o) _2sin(6+6°)tanl [---[T+sin2(6+6o)tan2l] 2 J

(22)

Turning to equations (8) and (9), we eliminate 0 and the various trigonometric functions of

{9 via equations (18), (4), (15), and (16). (The 0 terms involved in steering functions will not be

eliminated until a more convenient grouping is obtained.) This gives

_=I a(go)q (go)oI_p 1 X2cos9
(go)_I p-a(go), tJ r_/(2*2r2 +2.22)cos20+2.2

2;_ cos (6 + 60)tan I] _2 sin (6 + 60 )tan I

; /i+sin_( 6 + 60)tan2/] - i + sin2 (6 + 60 ) tan2 I
(23)

I a(go), (go)_]_b"= (go)o I p - a (go), tJ

2.

reosO x/(2*_ _+2._ ) cos"O+2*_

2 _2 sin (6 + 60)cos (6 + 60) tan u I 2r(6 (24)
+ 1 + sin2 (6 + 60) tan2 I - --7--

Inserting (23) and (24) into (22), expanding and collecting terms gives

1

r

a (go), (go)o 18p

_(go)_lsp - a (go), t

2. 2 COS 0

r2 + 2._ ) cos20+ 2*32

2*s cos(_b + 60 ) tan I

x,/(2*ux r2+2*_)cos29+2*_ cosO[l+sin2(6+6o) tan2l ]j =0
(25)

The first bracket does not vanish for powered flight; thus the second term (within the braces)

must be zero. This gives

2, 2 cos 2 0 [1 + sin 2 (6 + 60) tan2 I] = 2*3 cos (6 + 60) tan I (26)

Substituting cos 0 from equation (16) yields

2.2 =2*s cos (6 + 6o) tan I (27)

Equation (27) expresses a relationship between the Lagrange multiplier governing plane

changes (2.2) and the multiplier involved in planar flight (2*s)- This equation is valid i[, and only

i[, equation (4) is valid.



Our remaining task is to convert the other equations of interest to planar form. This may

be accomplished by use of equations (4), (15), (16), (18), and (27).

Elimination of the terms involving 0 and k 2 from equation (7) gives

[ a(go)_ (go)® l,v l

(go)®I- a(go) . tj _/x_

)_1 r GM r (_2sec2 f
+ (28)

r2+ A_ sec2l r2 [ 1+ sin2 (_ + 40) tan2l]2

Equation (8) is replaced by equation (4) and equation (9) has been partially reduced to the form

of equation (24). Inserting ], 2 from equation (27) into equation (24) gives

=Ia(go). (go)®l.o _)_a [1+sin2 (4+qS0)tan2l]

[(go)o lsp--a (go). t] rX/A _ r 2 + )_ sec 2 1

+ 2_2 [sin(_-_0) cos (6 + 60) tan2 11 2r_
1 + sin2(6 + 60) tan 2I r

(29)

The equation for _1 , equation (10), becomes

)_x-2A3 -- l+sin2 (4+_b0)tan2 +A4=0 (30)

By passing equation (11) for the moment, we find the two-dimension*a1 form of equation (12) is

I rl)_1 r_ -'ks + C 1 =0
_3 +2 l+tan2lsin2 (4+4o)

(31)

In order to obtain an expression for k 2 , we first take the time derivative of equation (27) which

give s

'k2 = _3 cos (4 ÷ 40) tan I- _'3 _sin (4 ÷ 40) tan I (32)

and, after elimination of A3 via (31), we find

£2 =_3 tanl I2 _ 1
- cos(qS+ q5 o)- _ sin (4 + 40
T

_I COS(_+_O ) tanl l-ClCOS (4+ 40) tanl-2A1_ 1 + sin2 (4 + _0 ) tan2 l
(33)

Equation (33), along with the previously mentioned reduction formulas, now gives the planar form

of equation (11) as

Xs =tanl [C 1 cos (4+q50)-)_3 _ sin(4 +60)] (34)

Equation (34) is an analytical expression for the second "non-planar" Lagrange multiplier.



The planarformof equation(13)is

_t4+A* -r-T + [l+tan2 /sin2 (_+_o }] + _ 1

X_ sec 2 1

+ tans I sin s (95+ 950 )

__Ia(go), (go)olsp _ A23 sec 2 I =0

L (go)_ ls_-a (go), t] r2_/hl 2 r 2 + A2 sec 2 I

(35)

Similar reduction of equation (14) and the application of equation (34) yields an identity.

Equation (27) also provides an interesting relationship between the thrust orientation angles

when applied to equation (6). From these we find

tan 8 - IX3 cos (_ + 950) tan I] cos 0 sin y = cos (q5 + 950) tan I cos 0 sin y
A3

(36)

Eliminating cos 0 from (36) gives

tan 8 - cos (5_ + 95o) tan I sin y
X/1 + tan '_I sin 2 (95 + 950 )

(37)

This is the relationship that must be maintained between the thrust orientation angles in order

that a planar segmentcan be inserted into a three-dimensional trajectory.*

The previous development may be summarized by stating that equations (28), (29), (30),

(31) and (34) are the equations of motion of a constant thrust rocket-powered vehicle along a two-

dimensional trajectory. The trajectory has an inclination I with respect to a reference plane.

Equations (4), (27), and (34) replace equations (8), (11), and (14), respectively. (Equations

(4), (27), and (34) are carried during numerical comFutations so that an immediate transition to

three-dimensional trajectories is possible.) The trajectory is now described by two first order

and three second order equations. The loss of one degree of freedom has thus eliminated three

variables.

SECTION IV. END CONDITIONS

The various end conditions of interest will now be investigated.

The first consideration will be of the initial conditions applicable to a direct ascent to

escape or ascent from the lunar surface to a circular orbit. We have

t = t o = 0 (38)

* Equation (37) is more generally applicable than our formulation has indicated. For, if the

problem of constraining the equations of motion to a plane is formulated independently of the

Lagrangian multipliers (that is, in temas of y and 3) then the braces of equation (25) read

Is c°s B sin Y tan I c°s (q5 + _°) tin B X/1 +tan 2 I sin s (95+ 950)

which must be zero; equation (37) follows immediately showing that this equation is independent

of considerations of optimallty.
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W o m (go). (39)

r = r0 = r (40)

_= _o =0 (41)

J7

0 = 0 o (arbitrary, # -+ -_ ) (42)

= _o =0
(43)

q5 = _ o = 0 (arbitrarily zero) (44)

= _o = f_ (angular velocity of the Moon) (45)

If the first end condition is a circular orbit zero radial velocity and circular energy must be
specified; that is

;o = 0 (46)

GM

C rc (47)

The orbital inclination is given by

tanl = _/sin2(0c- 00) + 1/2[sin 200 sin 20c (1-cos Oc)] "

c_s 0o cos 0 c sin 6e
(48)

If the trajectory does not pass through a circular condition but flies directly to escape, the

radial velocity does not (necessarily) vanish at cutoff. Furthermore, minimum energy escape is

defined by zero (parabolic) energy. From equation (3) comes

T[pl r2+r2(_j_p +_2 v cos 2 _gp)] G34r - 0 (49)

Equation (48) is still valid for direct escape.

The remaining point of interest for direct escape or escape which is initiated via ascent to

circular orbit is the inclusion of thrust-velocity alignment at cutoff in either of these conditions.

This is equivalent to requiring that our optimal steering program terminate in a gravity turn.

To proceed with the formu htion, unit vectors in the thrust and velocity direction are written

from equations (1) and (2) as

v ; u, + ue

v x/;_+ _(#_ + _cos_ o) x/;_+ ,_(O_ + cos

r _ cos 0 _+
cos 0)

(50)



and

A T A
- -_-= cosScosyu r + sin _u 0 +cos_siny u//T q

Equating components of these unit vectors, we can solve for

• r_cos 0
tan y = r"

(51)

(52)

and

tan _= %/;2 + r2 _2 cos2 O (53.)

It may be seen, from equation (52), that as the radial velocity vanishes along a gravity turn

the angle y approaches + rr/2.

The end conditions applicable to escape from lunar orbit along a planar trajectory will now

be considered. If the vehicle is in a circular orbit the radial velocity is zero. The planar form of
equation (47), derived as usual, is

r2 62sec 2 I GM
(54)

This equation may be conveniently inverted to give ;c for escape from orbit if rc
Thus

c cos I c [1 + tan 2 I c sin2(rc + 40 )]

is specified•

(55)

Escape occurs, as before, when the total energy is zero.
equation (49) is

The two-dimensional form of

I 2 "2 1

r u c_u sec 2 I¢ MG - 0 (56)! ;2 +
2 [l+tan I c sin 2 (6p+60)] 2 r,

where the subscript denoting a circular condition has been retained on the inclination symbol

since we are following a planar trajectory and no change occurs in the inclination.

The planar .forms of equations (52) and (53) are

tan y = r%/l+tan2 Isin2(6+6o)
(57)

and

tan _ = r_tanlcos (_ + _0)

%/l+tan2lsin2(6+6o),%/;U[l+tan21sin2(6+6o)]+r2_2, (58)

If either of the above equations is fulfilled along a two-dimensional trajectory, the other is

automatically satisfied. The insertion of the last two equations into equation (37) yields an
identity.
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Although the derivation will not be given here, it is possible to rewrite equations (52) and

(53) or equations (57) and (58) in terms of Lagrange multipliers, rather than the thrust orientation

angles by use of the equations of Sections II and III. These relationships are not as useful for

numerical applications as those presented above since it is difficult to specify convergence toler-

ances on the final (unknown) values of the Lagrange multipliers.

SECTION V. NUMERICAL INTEGRATION PROCEDURE

The numerical integration procedure used in the preparation of the data presented in the

following section was closely connected with the discussion in Section VII of Ref. 1. Only the

differences between the procedure given in this reference and the techniques employed here will

be discussed.

DIRECT ESCAPE

Consider, first, the problem of direct escape from the lunar surface (i.e., a circular orbit is

not attained before escape conditions are reached). For this case a three-dimensional ascent

traiectory is employed and equations (7) through (14) govern the time history of such a trajectory.

At the lift-off site, equations (38) through (45) determine the initial conditions of the state

variables and the specific impulse is assumed to be given.

The remaining initial conditions which must be specified are the Lagrangian multipliers

A_ , A_ , A_ , A_ , A_ , and C 1 . Since the set of equations governing these multipliers is homo-

geneous in the lambdas, one of the initial values is arbitrary; the chosen multiplier was CI(A 6)

and the value Ct= -10 s was found to be a convenient "scale factor" choice. (This value is used

for all results given in this report.)

If we restrict our discussion to vertical lift-off, equations (5) and (6) show that A_ and

A_ must be chosen equal to zero if A_ is to be finite.

We are left with three initial values, i.e., A_ , A_ and A_ • It was found convenient to

iterate final inclination with As and final thrust and velocity vector alignment (with respect to

o . This leaves a degree of freedom open, and it may be utilized in any of several ways.y) with A 4

We may, for example, choose to determine an altitude at which escape occurs via A_ . This

altitude may be defined as the altitude at which maximum payload may be injected into an escape

trajectory. Alternatively, it may be an altitude which is matched against the altitude attained

by the same vehicle (at escape) if the trajectory had passed through a given parking orbit. We

could also utilize A_ to align thrust and velocity with respect to _ as A°4 was used for this

alignment with respect to y.

The final parameter determining the escape, energy, can be determined directly from the

burning time. The optimal steering program assures that the time necessary to attain escape

energy is a minimum.

ESCAPE THROUGH ORBIT

Escape through orbit is a more practical operation than direct escape since the latter mode

allows very little margin for error. On the other hand, the parking orbit trimming, plane matching,

launch window alignment, etc.

The study of the trajectories which attain a parking orbit present a basically different

situation than the problem mentioned above. In that case we had a surpLus of degrees of freedom

which enabled most end conditions of interest to be reached. In the present case we have no

available freedom other than burning rime from orbit to escape. The problem of initial values

necessary to attain a circular orbit from ground launch, treated in Reference I, need not concern

us here; it is only necessary to note that all mathematical quantities have given values once an

orbit has been attained. If we require any conditions (besides energy) to be prespecified when

escape occurs we must allow a discontinuity in the state variables or the Lagrange multipliers.

The first mentioned choice is physically unrealistic whereas the second choice amounts to a

11



reorientation of the thrust direction and/or its rate of direction change. This is physically

justified by considering that we have nulled the thrust vector, reoriented the vehicle (or modified

the vehicle rates) and reignited. This process may be considered to occur in an arbitrarily short

time. We have, none the less, perturbed our overall optimum considerations.

To proceed with the discussion, the planar escape portion of the trajectory is mated to the

three-dimensional ascent portion of the trajectory which was discussed in the above-mentioned

reference. In practice, the vehicle was studied from ground launch to escape for convenience.

Equations (7) through (14) were used until orbit was achieved and then equations (28), (29),

(30), (31), and (35) were used. Equations (4), (18), (27), and (34) were used to keep track of

0,_, X 2 , and ;i s , respectively.

We can consider that all multipliers are known from cutoff conditions of the boost to orbit

or reset various _¢alues • In resetting the values, it should be noted that thrust will be oriented

along the velocity vector at orbital launch providing that X 1 is given a value of zero at this

point. Either ;t 3 or X 4 may be used to align thrust and velocity at the final point. The other of

this pair may be used to specify an altitude at which escape occurs.

All state variables are known from cutoff conditions of the ascent maneuxrer (even if it is a

"virtual" cutoff), but one point should be noted. The conversion between equations governing

three-dimensional trajectories and circular trajectories usually is slightly in error since non-zero

convergence tolerances on end conditions are necessary in practice. We may thus have a com-

puted orbital inclination from the ascent that differs very slightly from a defined inbiination that

is put into the planar equations. Some state variables thus experience a discontinuity, but such

errors are orders of magnitude lower than those resulting from the approximations used in con-

struction of our mathematical model.

ESCAPE FROM ORBIT

The escape maneuver initiated from an orbit which has not been obtained via powered ascent

directly to that orbit'differs only very slightly from the above considerations of escape through

orbit. The primary distinction between these situations is that certain state variables are

interrelated by Kepler's laws. We may define the altitude of interest and assure a circular orbit

by insisting that _ = 0 and _ be given by equation (55). The angle _ may be chosen arbitrarily

since we are not conducting a launch window study.

The various unspecified multipliers (X1 , )i3 , X4 ) may be determined by the same considera-

tions as given above for escape through orbit.

In practice, the initial value of 2'1 at orbit was always set equal to zero in order that the

thrust and velocity vectors were _nitially aligned. The value of 2i 3 at orbit was constant (10 s)

and )14 was chosen to have such a value that thrust and velocity vectors were aligned at cutoff.

In order to check the validity of these restrictions, trajectories were calculated which

isolated initial values of )l 1 and 2t 3 in such a way that the mass fraction at escape was maxi-

mized. (This procedure amounts to determining an optimal initial angle of attack and an optimal

final altitude.) The performance increase was so small that it affected only the last significant

figure of the mass fraction. Such differences are totally useless from an engineering viewpoint.

12



SECTIONVl. NUMERICALRESULTS

Thenumericaldataof this sectionpresentsomeof the more common results used in the

study of ascent trajectories. The two basic parameters are specific impulse (300, 350, 400,

and 450 sec.) and initial lunar thrust-to-weight ratio (1 through 7). The initial values of the

Lagrangian multipliers for each case are given and allow extension of the results to other pro-

blems of interest, if computation facilities are available. (The present study was conducted

using an IBM 7094 computer.)

Before proceeding to a discussion of specific results, a few general comments are in order.

The lift-off site is always on the lunar equator and the longitude, _, is always initially zero

(since the moon is rotationally symmetric, by assumption, this is no restriction). The vehicle

lifts off vettically 0t_ = ;_s = 0) and the trajectory is towards the North in the same sense as the

lunar rotation. All three-dimensional trajectories have a final inclination (with respect to the

lunar equator) of five degrees; all planar trajectories have a constant inclination of five degrees.

The time increment used for numerical integration was four seconds. All altitudes are given in

meters, angles in degrees, time and specific impulse in seconds, and all thrust-to-weight ratios

are lunar referenced.

Those trajectories that pass through a circular orbit during ascent always involve some

discontinuity in the variables. This is because the ascent trajectory never achieves an exact

circular orbit.* The values were reset to zero tolerence figures before initiating the planar escape

maneuver. In all cases the value of ;_ 1 at orbit is taken to be zero. In the trajectories which

pass through orbit an alignment of the thrust and velocity vectors at escape is achieved by a

discontinuity of either A s or A 4 at orbit. (The magnitude of this discontinuity is roughly 10

percent of the value achieved at orbit.)

For either of the two basic modes (direct or through orbit) two sets of data are presented.

The first set fixes the altitude at which escape or orbit occurs at 15 kilometers and the second

set requires that thrust and velocity be achieved at orbit and/or escape.

DIRECT ESCAPE

Tables i through 20 deal with trajectories which achieve parabolic escape energy without

passing through a circular orbit. The first 10 of these tables provide data for vehicles which

achieve an altitude of 15 kilometers, an inclination of 5 degrees, and an alignment of thrust and

velocity vectors (with respect to y) at escape. It may be noted that the mass fraction continually

increases with increasing initial thrust-to-weight ratio, at least through a value of T/W o = 7.

Another point of importance, in connection only with this set of 10 tables, is that the radial

velocity components are negative ([or all values o[ speci[ic impulse) i/ the initial thrust-to-

weight ratio is less than 4 (with the actual crossover point being between 3 and 4).

The second set of tables, Tables 11 through 20, deals with direct escape and is similar to

the first set, but does not achieve a uniform altitude of 15 kilometers. The altitudes of each

case of these tables is matched against the altitude achieved by a vehicle with the same speci-

fic impulse and initial thrust-to-weight ratio that passed through circular orbit (specifically the

cases listed in Tables 33 through 42). This altitude matching allows a direct comparison of the

mass fraction achieved at escape between the two modes. It may be noted that the direct mode

is better at low initial thrust-to-weight ratios, while just the reverse is true at intermediate

The convergence tolerences (deviation from prespecified final values) were as follows:

Ay = -+ .001 °, A I = + .001 °, A _ --_+.001 meters/second, A r--_+10 meters.

13



values of this parameter. At the upper end of the thrust-to-weight values presented here, the

comparison seems to depend upon specific impulse - but the differences are so small as to

preclude any definite statement.

ESCAPE THROUGH ORBIT

Tables 21 through 86 deal with escape trajectories which attain a circular orbit as an

intermediate condition. These tables are subdivided into three major catagories. It is assumed

in Tables 21 through 42 that the vehicle does not achieve an alignment of thrust and velocity at

escape; in Tables 43 through 64 such an alignment is achieved via a discontinuity in the multi-

plier A4 at orbit; such an alignment is also attained in Tables 65 through 86, but in these cases

the discontinuity occurs in the multiplier )_3 at orbit.

Each of these three sets are subdivided according to the altitude that is achieved at orbit.

The first groups always pass through a 15-kilometer orbit and the escape maneuver is initiated

from this point. (The thrust and velocity are not aligned at injection into this orbit since pre-

specification of inclination, radial velocity - zero, and altitude use up all degrees of freedom.)

For these cases it may be seen that there apparently exist certain initial thrust-to-weight ratios

that produce a maximum mass fraction at escape. The actual optimum was isolated by numerical

iteration for each value of specific impulse, and is presented as the first table of each of these

groups(Tables 21, 43, and 65).

The second halves of each of the three sets have varying altitudes. As noted in Reference 1,

prespecification of inclination, radial velocity (zero), and thrust-velocity alignment yields a

fixed (though a priori unknown) altitude. These trajectories, then, achieve the altitude pre-

determined by other requirements and escape from this altitude. It may be noted that the mass

fraction continues to increase with increasing initial thrust-to-weight ratio; but the altitudes

exhibit a peculiar maxima. These maxima were established by iteration and the results for each

specific impulse are given in Tables 32, 54, and 76.*

ESCAPE FROM ORBIT

Tables 87 through 97 deal with escape trajectories which originate in an orbit rather than at

the lunar surface. These trajectories are parameterized according to the altitude of the circular

orbit in addition to thrust-to-weight ratios and specific impulse values. It may be noted that

there exist optimum thrust-to-weight ratios (_- 0.6) which maximize the mass fraction at escapg

hut the decrease from optimum is very small for thrusts higher than optimum. Because of this

weak dependence the actual optima were not isolated. In all cases A 4 was initially chosen in

such a way that the thrust and velocity were aligned at escape. A few trial runs were made

which determined an optimal value of )_ 3 at orbit so that a maximum mass fraction resulted.

(This procedure can be regarded as determining an optimal final altitude at escape.) The results

showed such a small increase in mass fraction that it was not felt worthwhile to pursue the

matter. A similar optimization with respect to A1 would be possible here (as well as in the

escape through orbit cases) and such a procedure would essentially fix the initial thrust orienta-

tion angle at orbit.

* The trajectories are extremely difficult and slow to isolate due to their instability, long

burning times, and the necessity of multiple trajectories for isolation.
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SECTION VII. GRAPHICAL PRESENTATION OF RESULTS

The following graphs present the numerical data of the previous section in a form which aids

interpolation and allows a direct comparison of the various modes of escape. These graphs are

presented in order corresponding to the tables of the preceding section.

A few general remarks about the graphs may be made. The initial lunar thrust-to-weight

ratio is usually chosen as the independent variable for FIG 3 through 61 since most quantities

exhibit strong dependence upon this quantity. These graphs are parameterized by four values of

the specific impulse so that dependence of the dependent variable upon the two basic variables

is immediately apparent.

The graphs which deviate from this format (FIG 17, 18, 23, 24, 30, 31, 37, 38, 45, and 53)

are those in which the initial value of thrust-to-weight has been chosen to obtain a specific end

condition, i.e., maximum mass fraction or maximum altitude at orbit. For a specified mode, the

only remaining independent variable to be chosen is specific impulse and this parameter is used

as the abscissa in these cases.

For each set of graphs the mass fraction, final value of gamma, and burning time are plotted

as a function of the initial thrust-to-weight ratio. In all cases except the graphs corresponding to

Tables 1 through 10 and 11 through 20* the escape altitude is also shown in a similar manner.

In both sets of graphs dealing with direct escape the initial values of the Lagrangian multipliers

necessary to achieve orbit are also plotted against initial lunar thrust-to-weight ratio. These

types of graphs are not shown for the ascent-to-orbit phase of the trajectory since they are

available in Reference 1. For those modes which involve a discontinuity in either of the multi-

pliers A 3 or A 4 at circular orbit, graphical presentation shows the adjusted value which was

necessary to attain alignment of the thrust and velocity vectors at escape.

FIG 62 through 97 deal with the escape-from-orbit maneuver. Since this involves the addi-

tional parameter of initial orbital altitude it is, naturally, more difficult to adequately graph the

data. The initial thrust-to-weight ratios do not exert such strong influence as in the preceding

cases, and the initial orbital altitude is usually a more convenient independent variable. A

further complication that arises is that for certain plots the variation in specific impulse makes

so little difference in certain other quantities that it becomes necessary to plot separate graphs

for various values of Isp. In FIG 92 through 97 the variation in mass fraction with initial

thrust-to-weight ratio is continued only through T/W o = 2.5. Beyond this point the curves are

too flat to be of interest.

* For Tables 1 through 10 the escape altitude is a constant, 15 km: Tables 11 through 20

have altitudes which correspond to Tables 33 through 42 on a case-by-case basis. FIG 26 and

27 thus correspond to the altitude plots for both sets of Tables, 11 through 20 and 33 through 42.
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SECTION VIII. NUMERICAL EXAMPLES

In the following four examples an attempt is made to illustrate a few of the possible uses of

the above numerical data. These methods allow a first-pass determination of the various quanti-

ties that are usually of interest as well as provide estimates of the initial values of the Lagran-

gian multipliers necessary as input data to numerical calculations.

Example 1. Suppose that we desire to find the characteristic velocity, final value of gamma,

burning time, and initial values of the multipliers i 1 ' A 4 ' and A s required to perform a direct

escape mission from the lunar surface to parabolic velocity. Assume that the vehicle has an

initial lunar thrust-to-weight ratio of 2.7 and a specific impulse of 410 sec. Require that escape
occurs at 15 kilometers altitude.

The solution begins with the use of FIG 3, 9, 10, 5, 7 and 8. If a vertical line is construc-

ted on each of these graphs from T/W o = 2.7, the data presented in Table 98 are obtained.

300

350

400

450

7_es c/TR 0

.4232

.4780

.5230

.5613

Table 98

(T/W o ) --- 2.7

Yese te_ A_

91.02 388 3.77

91.1'4 411 4.00

91.25 427 4.28

91.32 443 4.50

.0231

.0247

.0256

.0262

-8790.3

-8789.2

-8788.5

-8787.8

The next step is

mesc �toO , Yesc ' and

graph for A 1 , A4 , and

to isolate the given specific impulse, 410 sec. FIG 98 shows a plot of

tf VS l_p for the necessary value of T/W o while FIG 99 shows a similar

A s " For a value of lsp ---- 410 on these graphs we read

Table 99

Isp ]mese/mo rest tes e A._ A._ A_

410 .5310 91.27 ° 431 4.33 .0257 -8788.4

If we define u to be characteristic velocity we have

u =(go) _ l_pln (m°)=(go) _ lsp In 1rResc rues c/m 0

(9.81) (410) In 1
.5310 - 4022.1 In (1.883) = 2545 m/sec

Assume now that the vehicle had a lift-off weight of 35,000 earth pounds and the actual

weight at escape is of interest. This may be obtained by multiplying the initial weight by the
mass fraction at escape. Thus,

Wes c = W 0 mesc

/77 0
- (35,000) (.5310) = 18,585 earth pounds
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Thethrustacceleration at escape _nay also be derived from the given data. As shown in

Reference 1, there exists a general relationship of the form

= a (go), (go)o I, v
m (go)o lov-a (go)1 t

Since all quantities are known we can write, at escape,

T _- (2.7)(1.622169")(9.81)(410) = 8.25 m/sec 2
mes c (9.81)(410) - (2.7)(1.622169)(431)

converting this to the more familiar "g" we have

(T/mes c ) 8.25

(go)o 9.81
- .841 g

This value can be used to calculate the total acceleration at cutoff by use of the equations of

motion, if it is of interest.

As a final point of interest we can calculate the thrust level of the engine since we have

previously specified the thrust-to-weight ratio and weight of the vehicle. We first convert the

weight from earth pounds to lunar pounds by multiplying by the ratio of the gravitational accele-

rations; i.e.,

(go)f 1.622169 m/sec 2 1

(go)® 9.81 m/se--_c 6.047459

because we know that

(Wo)_ -- (mo)(go)o

and

(Wo), = (mo)(go)¢

solving for m 0 (an invariant) in each of these equations we know that

(W o)® (W o),

(g o )o (g o),

since mass is an invariant. Thus,

(Wo_ =(Wo).
(go),

(go) •

From the original statement we now have

T

(35,OOO)
6.047459

-- 5787.55 lunar pounds

(Yol (w°)' -- (2.7)(5787.55) = 15,626 pounds
|

-- 69,508 newtons

(The thrust, given in newtons, is an invariant.)

211



Example 2. To determine the mass fraction that may be propelled to direct escape from the

lunar surface if escape occurs at 20 kilometers and the thrust and velocity vectors are to be

aligned at escape. Assume a specific impulse of 375 sec.

This problem is of the class treated by Tables 11 through 20, and shown graphically in

FIG 11 through 16. The altitudes, however, were matched with the corresponding thrust-to-weight

ratios and specific impulses of those trajectories which ascend to a circular orbit and have a

thrust and velocity vector alignment at orbit, but no alignment at escape. Graph 27 shows

the altitude at escape as a function of initial thrust-to-weight ratio for either mode, and we begin

the treatment of the problem here.

A horizontal line at an altitude of 20 kilometers on FIG 27 produces the data presented in
Table 100.

Table 100

Final Altitude of 20 Km.

lap T/B_

300 3.20

350 3.37

400 3.51

450 3.61

FIG 100 shows T/W o plotted as a function of l_v . For a specific impulse of 375 sec we may

now read the initial thrust-to-weight ratio of 3.44. That is, this value of T/W o and an l,p of
375 sec will produce an altitude of 20 kilometers for this mode.

From FIG 11 and 16 we can now read the data for T/W o --3.44 given in table 101.

Table 101

T/_' 0 -- 3.44

[ sp m esc/mO test

300

350

400

450

.4290

.4830

.5282

.5663

300

317

333

343

Adding these data to FIG 100 we obtain the results presented in Table 102.

Table 102

l_p mese/mO ] /e_c

375 .5061 I 326

Example 3. For a vehicle having a thrust of 20,000 pounds and a specific impulse of 330 sec,

find (a) the maximum mass fraction that may be injected to escape, and (b) the maximum payload

that may be injected to escape. Assume that the escape trajectory passes through a 15-kilometer
circular orbit.
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As was noted in Reference 1, the two parts of this problem are not identical. We shall

firs t inv estiga te part (a).

Since no specification about thrust and velocity alignment at escape is given, we shall try

all three possibilities (presented in this report) for trajectories which escape through a 15-kilo-

meter orbit. We start with FIG 17 which maximizes mass fraction via a choice of T/W o and

does not align thrust and velocity vectors at escape. From this graph we can directly read the

fol lowing:

Table 103

T/W o me.c/m o res _- r 0

4.038 .4645 15.902330

FIG 30 shows the similar data for escape through a 15-kilometer orbit with thrust and velocity

aligned at escape by a discontinuity in the multiplier h 4 at orbit. This graph produces

I
_p

330

Table 104

T/W o me. c/m o r - ro

4.030 .4653 15.776

Similar results are achieved in FIG 45 for alignment via a h s discontinuity. This graph shows

lsp

330

Table 105

T/Wo mesc /mo resc- ro

4. 028 .4655 15.764

Since the last of these modes produces the greatest mass fraction at escape, we shall take

this case to proceed with the investigation. Since the thrust was given as 20,000 pounds and

since we have determined that

(T/Wo)t = 4.028

we find

T 20,000
(W°)q 4.028 - 4.028 - 4965 lunar pounds

This may be converted to earth pounds as

(Wo)o = (4965) (6.047459) = 30,026 pounds (earth)
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Thetotalweightwhichachievesescapeis nowgiven, in earth pounds, as

Wesc = /_lmesc (W°)_ -- (.4655) (30,026) = 13,977 earth pounds

The total propellant expenditure is, thus

Wpr0p = W 0 - W_. c = 16,049 earth pounds

As was illustrated in Reference 1, the maximum payload to escape occurs at an initial

lunar thrust-to-weight ratio of 1. This will now be used to solve part (b). From Table 66 we

find

Table 106

[ sp m esc/m 0

300 .35280

350 .40212

400 .44421

450 .48048

By interpolation we find from FIG 101

[ sp m_ se/m 0

330 :3855

Now, since

we have

or, in earth reference

The payload, at escape, is now

The fuel expenditure for (T/W o )l

T/Wo= 1

W o = T = 15,000 pounds (lunar)

Wo -- (15,000)(6.047459) = 90,712 pounds (earth)

W_, c = (.3855)(90,712) = 34,969 pounds (earth)

= 1 is, thus,

Wwop-- 90,712- 34,969 -- 55,743
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We thus obtain a larger payload at (T/W o)" = 1 than at (T/Wo) t = 4.028, but we have a far

larger percentage of the lift-off weight expended as fuel during the ascent to escape.

If we wish to retain the same payload (34,969 earth pounds) while minimizing the fuel ex-

penditure, the problem above may be worked backwards to find the optimum thrust.

We have

We, e = 34,969 pounds

For an optimum T/W o (= 4.028) we have

so that

Wo _- Wese ml____ ) 34,969= _ --- 75,121 earth pounds

Converting this to lunar pounds we find

(Wo)q
75,121

6.047459
- 12,422 lunar pounds

Now

(T/Wo)I = 4.028

T = (4.028) (Wo) , = (4.028) (12,422) = 50,036 pounds

Thus, an engine of optimal thrust which produces a payload of 34,969 earth pounds has a thrust

of 50,036 pounds.

The propellant expenditure for this engine is

W0 - W_ c = 75,121- 34,969 = 40,152 earth pounds

The difference in propellant expenditure for the two engines is now

(Wp_op) ls,ooo -(Wv_op)so,os6 = 15,591 earth pounds

This may be regarded as almost pure weight saving simply by choice of the proper engine.

This weight difference only accounts for the extra propellant expenditure required to attain

escape velocity for the above payload; it does not account for the additional propellant required

to land this on the lunar surface, the additional fuel necessary to escape the sum of these from

earth, etc. Thus, even a small fuel saving can magnify when carried over several segments of a

complicated mission.

Example 4. As a final example we shall consider the following: Determine the altitude at

which escape occurs and the characteristic velocity required to attain escape for a vehicle

which has an initial lunar thrust-to-weight ratio of 0.75 and a specific impulse of 425 if the

escape trajectory originates in a 185-kilometer (= 100-nauricaI-mile) circular orbit about the
Moon.
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The procedure requires an additional step to those problems treated previously since we
consider the circular orbital altitude as an additional parameter. The solution begins with the

use of FIG 62, 63, 64, and 65 which show final altitude as a function of initial altitude for

various parametric values of initial thrust-to-weight. The datfi are made available by con-

sttucting a vertical line from 185 kilorrteters on each of these graphs, and is available in Table

107.

Table 107

Initial Circular Orbital Altitude = 185 Km.

]sp

300

300

300

300

300

350

350

350

350

350

_'/Wo

.4

.6

.8

1

2

res C - TQ

333 .

256 i;

226 t212

192 '

.4 339 •

.6 259

.8 228

1 212

2 193

FIG 62

FIG 63

400 .4 344 .

400 .6 261

400 .8 229 , FIG 64

400 1 213

400 2 193 '

450 .4 346 ,
I

450 .6 263 I

450 .8 231 i FIG 65
450 I 215

450 2 192

FIG 102 shows a plot of final orbital altitude vs initial lunar thrust-to-weight ratio for an

initial orbital altitude of 185 km. A vertical line from T/W o -- 0.75 now produces the data given

in Table 108.

Table 108
Initial Circular Orbital Altitude --- 185 Km.

Initial Lunar Thrust-to-Weight Ratio = 0.75

"300

350

400

450

resc -- r 0

231.5

233.5

235.0

236.5

218



o 350

I

r_
u
m

300
4.)

<

sp

250
iI =

sp

Isp = 350

Isp = 300

200

.8 1
Initial Lunar Thrust-to-Weight Ratio, T/W o

ALTITUDE AT ESCAPE VS INITIAL LUNAR THRUST-

TO-WEIGHT RATIO FOR INITIAL CIRCULAR ORBITAL

ALTITUDE OF 185 krn.

2

219



(The reader will note that our significant figures mysteriously increase as we proceed; this

example, however, is illustrating a technique rather than producing an answer.) FIG 103 now

shows re. ° - r 0 vs lap for the above determined values of ror b - r 0 and T/W o . A vertical

line from lap = 425 now yields

tea c- ro =235.7 km.

as the altitude at which escape occurs.

To determine the characteristic velocity we first find mes _/m o. This may be done by the

use of either FIG 66 through 76 or FIG 92 through 97. Choosing the former set, we first con-

struct vertical lines from ro_ b - 5 = 185 kilometers on FIG 66 through 71 to obtain the data

given in Table 109.

Table 109

Initial Circular Orbital Altitude -- 185 Km.

T/W o = .2 lap me._/mo

.2 300 .7910

.2 350 .8175
FIG 66

.2 400 .8380

.2 400 .8550 i

.4 300 .7972

.4 350 .8233
FIG 67

.4 400 .8438

.4 450 .8600 ,

.6 3OO .797O

.6 350 .8233

.6 400 .8435

.6 450 .8597

FIG 68

.8 300 .7970

.8 350 .8230

.8 400 .8435

.8 450 .8594

FIG 69

1.0 3OO .7969

1.0 350 .8229

1.0 4OO .8432

1.0 45O .8596

FIG 70

2.0 300 .7966

2.0 350 .8230

2.0 400 .8431

2.0 450 .8591

FIG 71

J
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FIG 104 now shows mass fraction at escape vs initial lunar thrust-to-weight ratio for an initial

orbital altitude of 185 kilometers. Construction of a vertical line from T/W o -- 0.75 produces

the data present in Table 110.

Table 110

Initial Circular Orbital Altitude -- 185 Km.

Initial Lunar Thrust-to-Weight Ratio -- 0.75

[sp mesc/mo

300 .7970

350 .8230

400 .8435

450 .8596

In FIG 105, mesc/m o vs Isp is plotted for the isolated values of Table 110. For Isp --425, we
find

mes e /m o -- .8520

The required characteristic velocity for parabolic escape is now

u= go l_p In(m° '_ -- (9.81) (425) in(_1_ ')
\me_c/

-- 4169.25 In (1.1737) = (4169.25) (.16016)= 667.7 m./sec.

The burning time to escape and necessary value of A4 at orbit are available by similiar

techniques.

SECTION IX. CONCLUSIONS

The numerical data presented in this report have been chosen in an attempt to fulfill two

purposes: firstly, to supply data for a nominal set of lunar escape missions, and secondly, to

study the problems that arise in connection with the calculation of various escape modes to a

sufficient degree that the given data may be readily extended to other cases of interest via nu-

merical integration.
The most restrictive assumption is that of parabolic escape energy as a cutoff criterion.

The initial values of the Lagrange multipliers are, however, relatively insensitive to small

changes in the cutoff energy so that extensions to other cutoff criteria are not difficult. The
numerical calculations involved in the extension of these results to other launch latitudes an d

other inclinations were discussed in Reference 1 and the results are valid for the present report.

Finally, the choice of a 15-kilometer orbit for escape is arbitrary, but convenient. Similiar

results can be obtained for any reasonable altitude (say, between 10 kilometers and 100

kilometers).

The insertion of a discontinuity into the steering program at circular orbit is simply a method

of gaining an additional degree of freedom to match a desired end condition. This procedure may

easily be justified on physical grounds but the mathematical significance of this encroachment

is far more subtle and open to question. It may be noted that we may not necessarily expect that

an arbitrary discontinuity in the steering program would lower performance since the variational

technique predicts relative optima with respect to neighboring continuous steering functions.
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APPENDIX

COMPUTER DIAGRAMS

GENERAL DATA FLOW

O
O

t_

o

Input
Data

t

I so[ation

Save

Initial

Data

¢
Initialize

Equations

of

Motion

Integrate

Equations

of.

i Motion

0
0

No _s

d

No

No
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INPUT BLOCK

Initial TraJ.ectory Parameters

0 0 }_0A_ .' "'4 .,' s ,,

Input
Desired Values for Cutoff

rf, rf, _,f, If

( i_tMode Flags

Mode i, Mode 2, or Mode 3

Input )

r,_,t
Flag Orbit Reached

Initialize Isolation Routine

Independent Variables; )k_ ) A_ , X_ ' Y0

Dependent Variables; r f, _f, _/f, If

Start

Search for

Desired Values

)

Save 1

Starting Values

Yes

T

Initialization

X 3 = X 1 r cos 0 tan )/

)k 2 = 1[A23 +(X1 rcos O)2]l/2tan. • yI/cos 0

Initialization I

= cos I [ i + tan 2 I sin 2 (_ -- _0 )](MG/r3 ) 1/2

To Integration Block

___ To Integration Block



INTEGRATION BLOCK

n -- Typical Time Step and m = 1, 2, 3, 4, 5

Save

r.-,ro; 0.400; ck.-'6o; (X=).-,(X=)o

;n'_;o ; 0._'6o; 6.-'6o; tn4 to

Compute

rt =%+;o At/2

;1 =;o +/',o At�2

0t =0o+0 o At�2

dl = _o+ Oo At/2

,..--,.o+,'.oA,/2
Sx = _/_o+ _boAt/2

(Ata)l = (A=) o + (3_m) o At/2

tl = to + At /'2

Evaluate MR Block

r =f(,r 1 , ;1, tl); O----f(01' 61' tl) t" _i_----" f((_l, (_1' t,) ;)_m=/t(Am), , t,]

Compu te

r2=%+;1 At�2

;2 = ;o + ;:1 At�2

02=00+0 t At�2

02 =0o+ 0 , At�2

,/,_= _ o+d_: At/2

_2 =(bo+ _l At�2

(A=)2 = (A=)o +(A=)t At�2

t2 =to + At�2

T
Evaluate MR Block

_" ----[(r2' ;2' t2); (_----/(02' 62' t2) ; _----" f(_2' _2' t 2) ; X',, = / [(X,,) 2. t= ]
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Compute

r3 =ro + _'2 At

;'3 =ro + r2 At

03= 00 q- b 2 At

03 = 0o + b'_ At
$

4,3= 4,0+ 4'2 A t

('_ :)3 = (X m)o + (X'm)_A t

t3=t o +At

Evaluate M R Block

r=/(r3' %' t3); O=f(03" 03' t3) ; '_=/(4,3' (_3 ' t3) ; ;(-,=/[(A=)3' t3 ]

Compute

rn-F 1

rn+ 1

0nq-1

n+l

4,n q- 1

(_n -t- 1

(_',.),,+ z

=r o÷(%At+2 ;1 At+ 2r 2 At+ r 3 At)/6

=ro+(r'aAt+2r 1 At+2r2At+r 3 At)/6

=0o+*(0oAt+201 At+202 At+03 At)/6

=do+(OoAt+20x At+20" 2 At+0 3 At)/6

=4,o+(<_o At+2<_, At+2 _ At+_3 At)�6

--_o +(#_o At+2_, At+2_: At+_3 At)�6

=(X:)o +[(;[=)o At+ 2(;[:), At+2(;_:) 2 At+(;_,=)_ At]�6

tn+ 1 =t o +At

+
Evaluate M R Block

;=f(rn+ 1' ;n+l' tn+,);'O=/(On+l' On+l' t+,); (_ =[(4,n+,, (_nq'l' tn+l);;m-----f[()_m)n+l" tn+l]

I

To Control Block
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CONTROL

f J

L

t

Mode 1 Direct to Escape

Mode 2 Via Orbit to Escape

Mode 3 From Orbit to Escape

Ve._

Ye,q

yes

Abort

Abort

To Mode Block

Yes

No

No

To Mode Block

To Integration

Block

To Start Search

Block

To Start Search

Block

To Input Block
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CONTROL

MODEBLOCK

No

No

No

I

No

No

Restore

Initial

Conditions

To Imegradon Block

To Integration Block

_._- To Start Search Block

__ To Ingut Bkw.k

To Input Block
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MR BLOCK

Compute

_Fo(- '. (go'-'-]I _, .... 0 i-'_--_+ ,c_,+_ co_0)
-L(go).t.p_a(go) ° t jLj(A2 ,2+x_)cos20+A_ J ,2

=L_g,),t._ -_ (go), t ,q(_ ,_+x_ )_o._0+x_j , -

_;"L_,oF_("" ('°_'''.'.- ° (,o' ' [ .... 0v(_: ,':,_).... o+_{] +2

r

_.2=_2(Axr__ A2 r +)%_umO)__s
r

[2MC, +(62+82cos20)] 2; •

7
(go)elo-a(go)_ t ',,

;s=_2 (At rsi. 20+) h cos20)-2X, O_ see20

- a2 " ' c s'O+X_
[f_go)®l.p-a(go._ t '.. ,d(X_ , +A::) o

EXIT

Compute

$= [_] x _[_ + sin_ (_- _o )_zO
2;_o(_-_o)CO_(_-_o)_° =, 2;___;

+ 1 + sin 2 (_- _o ) tanU 1 r

• [ ]sec 2 1 -- A4
_'x = _ X+ s/n_ C<_-_o) Um2 I

t] +tart _ I sin u (_-_o)]A, =- ),xt r---7_ + r_[1 + tan a I sin z (_- _o ) ]

mot / ] A_ sec 2 1
3

+ ,_ _/A_ ,_ + x_ _2

0 = tan- x[ tan I sin ($- $o ) ]

1 + tanUl sin 2 (4_ - _o)

X2 =X_ tan!cos(_-_o)

As = t_. t [ c_ co_ (qS- _ o) - x_ _ _i** % - 4'o)]

EXIT
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